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Monte Carlo generation of polymer chains allows evaluation of the steric partition coefficient, K, for any 
pore shape and any chain flexibility. This in turn enables the chromatographic radius of macromolecules, 
Re, to be defined as the radius of a sphere with the same K value and allows the ratio Rc/R, to be studied. 
R, is defined as the radius of the sphere with the same product [r/]M, where M is the molar mass and It/] 
the intrinsic viscosity. Rc is shown to depend on the pore geometry. For a given pore geometry, Rc/R ~ is 
not strictly independent of the flexibility and the relative thickness of the macromolecule. Experimentally, 
for flexible polymers, the so-called universal calibration is often found to work well. However, simulations 
show that the universal calibration is not strictly valid and deviations are expected in particular when the 
global flexibility of standard and sample are different. 
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I N T R O D U C T I O N  

Size-exclusion chromatography (s.e.c.) is a powerful 
tool for characterizing the molar mass distribution of 
polymers. Recent technological improvements have made 
this technique even more attractive. Unfortunately this 
method relies on a calibration based on monodisperse 
standards and does not yield the absolute molar masses 
when the studied macromolecule is different from that 
used in the calibration. Universal calibration (UC), first 
proposed by Beno]t et al. 1, apparently solved the problem 
by simply relating each macromolecule size (i.e. each 
elution volume) to a product [ q ] M .  Although the 
on-line viscosity measurements 2-4 raise experimental 
problems 5'6, especially with high performance column 
sets, intrinsic viscosity (It/I) measurements can nowadays 
be reliably performed 7'8. 

It has been claimed by many authors (first by Grubizie 
et al. 9) that UC is valid experimentally whatever the 
chemical nature and the structure of the polymer 1°. 
However, from a theoretical point of view the situation 
is different. Casassa and Tagami 11 and Giddings et al. 12 
assume that the elution process is governed by the 
equilibrium distribution of the solute between the 
mobile phase and the stagnant phase inside pores. 
The equilibrium is characterized by the partition 
coefficient, K, defined as the ratio between the 
concentration inside the pores and the concentration 
outside the pores. Using statistical mechanics, they have 
calculated K for random flight linear and branched chains 
as well as for rods, confined in pores with simple 
geometries. Casassa showed that UC is valid for any 
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linear or branched macromolecule containing a large 
number of statistical segments. The results of Giddings 
et al. lz  lead to different partition coefficients for a thin 
rod and for a flexible chain with the same viscometric 
radius. These idealized theoretical calculations indicate 
that UC can be applied to polymers of different 
architecture, but that rigidity might be a limiting factor. 

The aim of this paper is to study the influence of the 
flexibility of linear chains on the chromatographic radius 
and its relation to the viscometric radius through a Monte 
Carlo simulation of the size-exclusion phenomenon. 

D E F I N I T I O N  OF D I F F E R E N T  SIZES OF A 
M A C R O M O L E C U L E  

A single macromolecule has a complex temporal and 
spatial distribution of conformations and only average 
dimensions can be calculated or measured. A special 
mention is given to the radius of gyration, which 
corresponds to a clear geometric definition. The simplest 
way to compare sizes, as measured by different 
experimental techniques, is to define the corresponding 
size as the radius of a sphere with uniform density which 
has the same measured property as the macromolecule. 
The following sizes can be defined. 

1. The S tokes  radius, Rs, obtained from measurements of 
the translational diffusion coefficient: 

k T  
R ~ -  - -  (1) 

6~/oDt 

where k, T, ~/o and D t are the Boltzmann constant, the 
absolute temperature, the solvent viscosity and the 
translational diffusion coefficient, respectively. 
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2. The viscometric radius, R,, obtained from mass and 
intrinsic viscosity measurements: 

R.=[3E"]M] '13 (2) 
L 10~N,_] 

where N, is the Avogadro number. 
3. The chromatographic radius, R,, obtained fron s.e.c. 

(Re is the radius of the sphere that would have the 
same elution volume for a given pore geometry). 

Using these definitions, UC applies if the relation 
between R, and RE does not depend on the nature of the 
sample (linear or branched, flexible or rigid). For linear 
chains, a good estimate of R, can be obtained from the 
theoretical work of Yamakawa and Fujii ~3. R~ values 
have been calculated using a computer simulation in a 
wide range of realistic situations, especially for chains of 
variable stiffness ranging from freely rotating segments 
to rigid rods. 

PRINCIPLE OF SIMULATION 

The key parameter for s.e.e, is the partition coefficient K 
related to the elution volume: V~ = Vo + KVp, where V e is 
the solute elution volume, Vo the void volume and Vp the 
pore volume of the column. For rigid spheres, K is simply 
the volume fraction of the pores accessible to the centre 
of mass. For any other shape, K is best defined as the 
equilibrium constant for solute exchange from intrapore 
volume to bulk solvent as proposed by Casassa: 

Solute in bulk solvent ' Soluteinsidepore 
K=[S]p 

[s]b 

K has been calculated as follows. For a given pore 
geometry, a macromolecule is created by randomly 
choosing a starting point inside the pore volume. A 
random walk modified to account for conformational 
constraints is generated from this point. A macromolecule 
can be considered inside the pore if all segments remain 
inside the pore. Therefore K appears as the value of the 
fraction of successful trials, for a large number of trials. 
Rc is the radius of a sphere that would have the same 
elution volume as the macromolecule and whose centre 
of mass therefore has access to the same fraction K of 
the pore volume. For a number of pore geometries, there 
is a simple relation between R~ and K: 

(i) for a cylindrical pore of circular section with radius 
Rp or of square section with side 2Rp: 

K =(1 - R J R p )  2 (3) 

(ii) for a spherical pore with radius Rv or a cubic pore 
with side 2Rv: 

K=(1  --Re/Rp) 3 (4) 

Different chain conformations can be constructed. Two 
limiting conformations are fully rigid rods that contain 
only one segment and ideal chains (random walks). For 
more realistic chains the orientation of the segment i + 1 
is defined by two angles (c~ and fl). ~ is the angle between 
segments i and i + 1 and fi is the angle between the plane 
defined by segments i -  1 and i, and the plane defined by 
segments i and i + 1. Fixed values of c~ and fl give a regular 
helix if fi is not equal to 0 or n. Keeping ~ fixed and 
varying fl randomly between 0 and 2zt gives chains with 

freely rotating segments. Low values of e generate 
worm-like chains. Excluded volume effects are not taken 
into account during chain construction. 

The persistence length is the classical parameter used 
in order to characterize local chain rigidity. Here, we 
define a parameter P reflecting the situation for the whole 
chain as: P=con tou r  length/persistence length. For 
chains containing N freely rotating segments one obtains: 

p _  2N(1 - cos e) 

(1 + cos ct) 

P is equal to zero for a fully rigid rod and to infinity for 
a random coil (N infinite). 

The principle of the simulation is as follows: after 
choosing the values of N and e, chains are generated 
inside a pore of fixed geometry and size until a 
stable value of K is obtained. By using different pore 
sizes, K values can be varied between realistic limits 
(0.1<K<0.9).  The chromatographic radius can be 
calculated using relations (3) and (4) given above. The 
radius of gyration is also calculated from the chain 
construction so that Rc/R ~ values can be obtained. 

COMPARISON WITH THEORETICAL RESULTS 

The validity of the simulation procedure can be tested 
by comparison with explicit analytical results, available 
in limiting cases. As the position of each segment is 
explicitly known, the radius of gyration of each molecule 
can be calculated by direct summation. By choosing a 
pore of infinite size there is no constraint on the 
population and our results can be compared with 
theoretical values 14. For a chain with N freely jointed 
segments with length l, Rg is given by: 

(R2)  N(N + 2) 12 
6(N + i) 

Small values of N allow accurate checking of the 
uniformity of orientation randomness. After generation 
of 5 x 10 4 chains, deviation with theory was less than 
0.1%. For a chain with a large number of freely rotating 
segments: 

( R ~ ) - x ( n + 2 ) 1 2  1 +cos c~ 

6(N + 1) 1 - cos a 

Using values of N from 100 to 500 and ~ from 0.2 to 
rr/2, deviation with theory is less than 0.1% after 
generation of more than l0 s chains. Pure helices are 
indeed obtained when fl is fixed. 

Concerning theoretical values of the partit ion 
coefficient in simple pores, two special cases have been 
investigated in the literature. For random coils containing 
large numbers of segments in cylindrical pores, Casassa 
predicted 1 s: 

1 a 2 N l  2 
- -  i 

K = 4  .z~e 
i=1 ~i 

Here cq is a root of Jo(fl ) = 0 and Jo is a Bessel function of 
the first kind and order 0. In the case of rigid rods in 
cylindrical pores Giddings et al} 2 derived expressions 
for K which are combinations of elliptical integrals 
depending only on 1/R v. Taking fixed values of the 
segment length (l= 1 in both cases), the molecular size 
to pore size ratio was varied for a one-segment rod and 

1958 POLYMER Volume 35 Number91994 



1.0 i i i 

~ k %  m N = I  

0 . 8  \ \  ~ N=I G i d d i n g s  

\ . N= ooo 
sasa  

O 

0.4 

o 

' ~  0.2 

~u 

0.0 i i i i I 
0.0 0.2 0.4 0.6 0.8 

Rg/Rp 

Figu re  1 P a r t i t i o n  coefficient  K as a func t ion  of  the  r a t i o  of  the  r a d i u s  
o f  g y r a t i o n  to the  po re  r a d i u s  (RJR~,) for  two  values  o f  the  s egmen t  
n u m b e r  N.  The  resul ts  o f  C a s a s s a  a n d  T a g a m i  ~t a n d  G i d d i n g s  et al. ~2 
are included 

Steric partition coefficient in s.e.c.. C. Degoulet et al. 

Influence of pore geometry 
Observations by electron microscopy have been 

performed on various column packings: controlled 
porous glass 17-20, methacrylate gels 2 l, hydrophilic poly- 
ether gels 22 and styrene-divinylbenzene gels 23. These 
packings are found to consist of beads obtained by partial 
fusion of small irregular particles. This produces very 
deep, tortuous channels with irregular cross-sections but 
never with very thin protuberances or sharp angles. To 
take into account the geometry encountered along a given 
pore, a reasonable model would be a combination of long 
cylinders with circular or square sections and with more 
compact closed volumes (spheres or cubes). These four 
pore geometrical models were tested in order to establish 
whether an absolute size independent of the pore 
geometry can be estimated from s.e.c, in realistic 
situations (0.1 < K < 0.9). 

Two kinds of molecules have been tested: ideal 
random coils and rigid rods. In order to evaluate the 
chromatographic size Rc for molecules of different 
absolute size and geometry, we have chosen to compare 

a 1000-segment chain. Figure 1 shows that there is close 
agreement between simulation and theory in these two 
limiting cases. 

The limiting value K = 1 is reached as the pore becomes 
infinitely large compared with the chain. Geometrical 
details have no influence and the problem is reduced to 
the estimation of the depletion layer. For  a polymer 
solution near a non-interacting wall there is a zone where 
the segment concentration C(x) increases from 0 for x = 0 
to Cbulk for x = ~ .  The depletion layer D is defined by: 

° 

C(x).dx 
D = Cbulk 

For a population of rigid spheres the depletion layer 
is simply the radius of the sphere and therefore when 
K ~ 1, Rc--*D. For  any kind of macromolecule, CasassaJ 6 
established that D =X/2, X being the mean projection 
of the unconfined molecule on an axis. For  a thin rigid 
rod one obtains D=L/4 and Ro/Rg=0.86. For a 
Gaussian chain: 

1(8N12~ a/2 
D=-  

2 \ -~ -n}  

and Re/Rg = 1.] 3. Simulation of these two situations with 
K=0.98  recovers these values within 0.5%. 

In this study, the size of the test population is always 
chosen such that the error is less than 1%. It depends 
mainly on the number of segments, the angle between 
segments, and the value of the partition coefficient. 
Figure 2 illustrates a representative case for a chain with 
100 segments of length 1 and with c~ = re/2, in a cylindrical 
pore of radius 15. A good balance between time of 
simulation (which is roughly proportional to N) and 
accuracy can be obtained with 5 × 104 chains. 

RESULTS AND DISCUSSION 

It is now possible to study, using our simulation 
procedure, situations that cannot be easily handled 
analytically, i.e. the influence of pore geometry and chain 
flexibility. 

",,., 
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Figure 2 Chromatographic radius Re, radius of gyration Rg and ratio 
RffRg as a function of the number of generated chains (simulations 
with 100 segments of length l=1,  and angle a=n/2 in a cylindrical 
pore of radius Rp = 15) 
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Figure 3 Ratio of the chromatographic radius to the radius of gyration 
(Rc/Rg) as a function of the partition coefficient for rods in pores of 
various geometries. Curves are obtained with length of rod l = 1 and 
various pore sizes, Rp. The limiting value for K = 1 is indicated 
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the values of the dimensionless parameter Re/Rg in 
different practical situations. To allow the partition 
coefficient to vary between 0.1 and 0.9, for rods with 
length taken as unity (Figure 3), the size of the pore has 
been varied from 0.5 to 5 for cylindrical pores with 
circular section, from 0.9 to 12 for cylindrical pores with 
square section or cubic pores, and from 0.5 to 7 for 
spherical pores. For  chains with 100 freely joined 
segments of length 1 (Figure 4), Rp has been varied from 
7 to 80 for cylindrical pores with circular section, from 
12 to 140 for cylindrical pores with square section or 
cubic pores, and from 7.7 to 90 for spherical pores. For  
flexible chains, Ro/Rg varies between 1 and 1.2. For  rigid 
rods, Ro/Rg shows a larger variation between 0.86 and 
1.3. Additionally, for each pore geometry RJRg depends 
weakly on K. These results imply that s.e.c, does not give 
absolute size, but Re values are also influenced by the 
shape-shape interactions between porous matrix and 
molecules. 

The fluctuations of RJRg as a function of the pore 
geometry can be explained as follows for rods: a rod in 
a spherical or cubic pore can only take conformations 
with its centre of mass near the centre of the pore. In a 
cylindrical pore with circular section, rods can be oriented 
along the axis of the pore. So K is greater in that case 
for the same pore section and Rc/Rg is smaller for a given 
K. In a cubic or square-section pore, rods can be oriented 
along diagonals. Therefore the same phenomenon is 
observed for smaller values of K. For  chains with 100 
segments the situation is a little different: they cannot be 
easily oriented along a given axis because only a small 
fraction of chains is stretched. Therefore differences 
between pore geometries are qualitatively the same as 
for rods, but to a smaller extent. 

Influence of flexibility on R JR  0 
As it appears that the ratio R¢/Rg is different for coils 

and rigid rods, it is interesting to study more precisely 
the intermediate situations. The influence of the overall 
chain flexibility parameter on Ro/Rg is seen in Figure 5, 
for given values of the partition coefficient and a given 
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Figure 4 Ratio of the chromatographic radius to the radius of gyration 
(RffRg) as a function of the partition coefficient for chains with N = 100 
segments in pores of various geometries. Curves are obtained with 
length of segment l=  1 and various pore sizes, Rp. The limiting value 
for K = 1 is indicated 
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Figure 5 Ratio of the chromatographic radius to the radius of gyration 
(Re/Rg) as a function of the flexibility parameter  P for a cylindrical pore 
geometry. Results are plotted for three values of K 

pore geometry. P can be varied by either changing the 
angle e or the number of segments N. It has been checked 
that Rc/Rg depends only on P. For  P below 200, N was 
fixed at 100 and e was varied. For  higher values of P a 
fixed value e = re/2 was used and N was varied. The shape 
of the curves does not depend very much on the value 
chosen for K and similar curves have been obtained for 
other pore geometries. For  small values of P (i.e. for rigid 
molecules) RJRg does not depend much on P. A 
transition is observed around P = 10. Beyond this value 
a rapid increase of RJRg is obtained and the curves seem 
to level off for very high values of P. In particular, for 
K = 0 . 9  and P = 5  x 10 3, RffRg values are very close to 
the theoretical limit given by depletion layer calculations 
(Rc/Rg = 1.13). 

Influence of flexibility on Rc/R~ 
In order to calculate R~ using equation (2) we have 

used the numerical expressions proposed by Yamakawa 
and Fujii 13. They have expressed intrinsic viscosity for 
worm-like chains as a function of contour length (L), 
mass per unit length (M~), and diameter (d). To take into 
account in the simulations a finite value of the chain 
diameter d, it is sufficient to consider that at the pore 
wall the chains are excluded over a distance e=d/2. 
Assuming that Rc is the chromatographic radius of a 
thin molecule in a pore of radius Rp, then for the 
corresponding thick molecule the chromatographic 
radius will be Rc + e in a pore of radius Rp + e. This simple 
transformation allows us to compare R~ obtained by 
simulation with R, for chains with finite thickness. For  
a thin rigid rod of length L, effects of finite diameter 
vanish rapidly. For  L/d> 20, RolL does not depend on L 
and is fixed for a given pore geometry and K value. The 
limiting expression of R, for large values of L/d is24: 

L 3 
3 ~ D ] M  e ~ l  ~ 

ln(L/d) 

Therefore R~/L depends on L/d even for thin rods and 
theoretically the ratio RJR~ increases for rigid rods of 
constant diameter and increasing length: 

- - ~  In 
R. 
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More generally we can study the situation for any 
worm-like chain with constant local properties (diameter 
d and persistence length q) and various contour lengths 
(L), i,e. various flexibility P =L/q. Figure 6a represents 
the case of an arbitrary very thin molecule (q= 100, 
M~ -- 20, d-- 0.15) for which P varies from 0.05, i.e. Lid = 33 
(characteristic of a rod), to 1000 (characteristic of a coil). 
As R~ is slightly dependent on K, curves corresponding 
to three values of K are plotted. Up to P = 1 (L/d = 660) 
the variation in RJR, is similar to that of a thin rigid 
rod, which is not surprising, as Ro is valid for a rod up 
to P = 5 (Figure 5). For higher P values, the viscometric 
behaviour becomes progressively that of a coil and there 
is partial compensation between the variations of R, and 
that of R~. For K = 0.9, values obtained for larger values 
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Figure 6 (a) Ratio of the chromatographic radius to the viscometric 
radius (Rc/R~) as a function of the flexibility parameter P. Curves are 
obtained by combination of RJRg derived from simulations and R,/Rg 
from the theoretical work of Yamakawa and Fujii 13, using mass per 
unit length Mz = 20, diameter d =  0.15 and persistence length q = 100. 
Results are plotted for three values of K. (b) Ratios of the 
chromatographic radius to the viscometric radius (RjR~), the 
viscometric radius to the radius of gyration (R,/R~) and the 
chromatographic radius to the radius of gyration (RdRg) as a function 
of the flexibility parameter P. Curves are obtained by combination of 
RdRg derived from simulations and R,/Rg from the theoretical work 
of Yamakawa and Fujii *a, using mass per unit length M l = 2 0  , 
persistence length q =  100 and four values of diameter d: A,  0.15; [Z, 
0.33; Q, 1; x ,  10. Results are plotted for partition coefficient K=0.5 
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of P are compatible with the limiting value derived from 
a calculation of the depletion layer. In effect, in this 
case Rc/Rg=l.13 and for Gaussian coils R,/Rg=0.78, 
therefore RdR ~ = 1.45. 

Rn/Rg, Rc/Rg and R~/R, are plotted in Figure 6b as a 
function of the flexibility parameter P. Rc/Rg has been 
derived from simulations, and R,/Rg from the theoretical 
work of Yamakawa and Fujii 13, using M,=20,  q=  100 
and four values of d (0.15, 0.33, 1 and 10). The partition 
coefficient K was 0.5. The smaller the value of q/d, the 
smaller the fluctuations of Ro/R,. Yamakawa and Fujii's 
calculations for a worm-like chain are only valid for 
q/d> 10 and therefore do not describe the situation of 
flexible polymers for which the persistence length is in 
the same order of magnitude as d. However, by 
extrapolation, these results clearly suggest that the ratio 
RdR . stabilizes for lower values of q/d. This is merely 
due to compensation between variations in RJRg and 
R,/Rg. 

For realistic chains, such as DNA (q = 550, M~ = 195, 
d=23), Ro/R~ has been estimated from P=0.2  to 100 
(corresponding to molecular weights from 2 x 10 4 to 
1 X 107). In this range, the configuration of DNA changes 
from a rod to a statistical chain (Figure 7). This 
macromolecule has been studied extensively and UC does 
not seem to be valid in practice 2s. The differences between 
the 'rod' behaviour and the 'chain' behaviour are less 
important here, but still exist: Rc/R, increases by a factor 
of ,-~ 1.2 when P decreases from 100 to 0.2. 

Consequences for universal calibration 
UC entails that two macromolecules that have the 

same elution volume (same Re) for a given column (with 
a fixed pore geometry), have the same R,. For linear, 
highly flexible, high molar mass polymers, UC is 
experimentally well established. From a theoretical point 
of view this corresponds to the situation where all the 
radii, R,, Rg and Re, have reached their asymptotic 
behaviour and RJR, no longer depends on the details 
of the polymer structure. In the simulations, we have 
observed this behaviour for P values higher than 1000. 

m~ "a 
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1.0 
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Flexibility p a r a m e t e r  

Figure 7 Ratio of the chromatographic radius to the viscometric 
radius (RjR~) as a function of the flexibility parameter P. Curves are 
obtained by combination of R~/Rg derived from simulations and Rn/Rg 
from the theoretical work of Yamakawa and Fujii x3, using chain 
parameters of DNA (mass per unit length Mz = 195, persistence length 
q = 550 and diameter d = 24). Results are plotted for three values of K 
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Medium or low molar  mass flexible polymers have q/d 
values near 1 and P values between 10 and 1000. As 
pointed out previously, extrapolation of the results 
suggests that Rc/R,  tends to be stable in this P range. 
However, this can in no way be considered as proof  for 
the validity of UC. Moreover, recent experiments and 
theoretical work on the basis of the helical worm-like 
chain model 26'27 indicate that Rn/Rg varies specifically 
from one polymer to the other and so it would be 
surprising to always have exact compensation between 
variations in R J R g  and RJRg .  Further studies in this 
area are in progress. 

The situation is clearer when the studied polymer has 
a very different flexibility from the standard. In that case, 
for the same Re value R J R ,  is different for a semirigid 
polymer of low flexibility parameter  and for a flexible 
standard, and therefore UC is not valid. For  example, 
on a given arbitrary column we can elute at the same 
elution volume, i.e. same Re, either rigid D N A  (molecular 
weight, M W =  27 000, P = 0.5 and Rc/R  . = 1.68) or highly 
flexible polyoxyethylene (MW=50000,  P > 3 0 0  and 
R~/R,  = 1.45). If UC is applied, the calculated value of R, 
for D N A  is 15% too high and the calculated mass, which 
is proport ional  to R 3, is overestimated by 50%. However, 
for very high MW,, the differences vanish progressively 
as the flexibility parameter  of D N A  increases. 

For  polymers resembling spheres with uniform density, 
such as globular proteins, the situation is worse as Rc/R ~ 
is formally 1 for a sphere and near 1.5 for a flexible 
standard. In this case the error made by applying UC 
will become very important.  Experimentally, however, 
this is obscured by electrostatic effects that strongly 
modify the accessible pore volume depending on the ionic 
strength. 

SUMMARY 

In the case of a purely steric exclusion mechanism, 
Monte Carlo generation of freely rotating chains allows 
evaluation of the partition coefficient for any pore 
shape. In this way the chromatographic radius of a 
macromolecule can be defined as the radius of the sphere 
having the same K value in the same pore. In most 
realistic situations, the results show that Re is not very 
different from Rg, but noticeable variations occur 
depending on K and on the exact pore geometry. Keeping 
the latter parameters fixed, we have studied the influence 
of the flexibility of the chain on Re/Rg. Differences of up 
to ~ 2 5 %  are observed between the values for a rigid 
rod and a flexible coil. Results for infinitely thin chains 
can be adjusted so as to be applicable to chains with 
finite diameter. Re can therefore be compared with R,, 
obtained from theoretical calculations. The evolution of 

Rc/R~ has been presented as a function of the flexibility. 
For  realistic semirigid polymers, the variation in Rc/Rn 
is moderate, mainly due to the fact that low M W  
macromolecules are relatively thick rods. 

Nevertheless, the values of R¢/R, depend significantly on 
the architecture of the analysed polymer (semirigid, coil 
or globular), and it is likely that recent developments in 
s.e.c, multidetection, associating an absolute mass detector, 
a viscometric detector and a concentration detector, will 
contribute to progress in polymer shape determination. 
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